--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_50_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_base_lda_50_v1_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.7367746659344683 --- # bert_base_lda_50_v1_qnli This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_50_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_50_v1) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5458 - Accuracy: 0.7368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6503 | 1.0 | 410 | 0.6147 | 0.6506 | | 0.5535 | 2.0 | 820 | 0.5497 | 0.7155 | | 0.4425 | 3.0 | 1230 | 0.5458 | 0.7368 | | 0.3413 | 4.0 | 1640 | 0.6163 | 0.7335 | | 0.2508 | 5.0 | 2050 | 0.6988 | 0.7384 | | 0.1792 | 6.0 | 2460 | 0.8531 | 0.7338 | | 0.1282 | 7.0 | 2870 | 0.9751 | 0.7285 | | 0.0942 | 8.0 | 3280 | 1.0230 | 0.7276 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3