--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: bert_base_lda_20_v1_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.542723493120609 --- # bert_base_lda_20_v1_stsb This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_20_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_20_v1) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.6651 - Pearson: 0.5451 - Spearmanr: 0.5427 - Combined Score: 0.5439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.9133 | 1.0 | 23 | 2.4317 | 0.0791 | 0.0962 | 0.0877 | | 1.7921 | 2.0 | 46 | 2.1686 | 0.4521 | 0.4592 | 0.4557 | | 1.4021 | 3.0 | 69 | 1.9879 | 0.4763 | 0.4810 | 0.4787 | | 1.0503 | 4.0 | 92 | 1.9337 | 0.4942 | 0.4986 | 0.4964 | | 0.8246 | 5.0 | 115 | 1.7137 | 0.5360 | 0.5325 | 0.5342 | | 0.6757 | 6.0 | 138 | 1.6651 | 0.5451 | 0.5427 | 0.5439 | | 0.5303 | 7.0 | 161 | 1.7657 | 0.5456 | 0.5387 | 0.5421 | | 0.4539 | 8.0 | 184 | 1.9938 | 0.5482 | 0.5505 | 0.5494 | | 0.399 | 9.0 | 207 | 1.7298 | 0.5402 | 0.5311 | 0.5356 | | 0.3663 | 10.0 | 230 | 1.8046 | 0.5614 | 0.5599 | 0.5607 | | 0.2964 | 11.0 | 253 | 1.7391 | 0.5470 | 0.5401 | 0.5435 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3