--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_base_lda_20_v1_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.840563937670047 - name: F1 type: f1 value: 0.7909721771839938 --- # bert_base_lda_20_v1_qqp This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_20_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_20_v1) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3612 - Accuracy: 0.8406 - F1: 0.7910 - Combined Score: 0.8158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4706 | 1.0 | 1422 | 0.4144 | 0.7976 | 0.6849 | 0.7412 | | 0.3635 | 2.0 | 2844 | 0.3808 | 0.8274 | 0.7774 | 0.8024 | | 0.2981 | 3.0 | 4266 | 0.3612 | 0.8406 | 0.7910 | 0.8158 | | 0.2419 | 4.0 | 5688 | 0.4087 | 0.8491 | 0.7909 | 0.8200 | | 0.1933 | 5.0 | 7110 | 0.4482 | 0.8506 | 0.7908 | 0.8207 | | 0.1514 | 6.0 | 8532 | 0.4312 | 0.8535 | 0.8018 | 0.8276 | | 0.1208 | 7.0 | 9954 | 0.5434 | 0.8498 | 0.8041 | 0.8270 | | 0.097 | 8.0 | 11376 | 0.5605 | 0.8532 | 0.8022 | 0.8277 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3