--- library_name: transformers language: - en license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8429617575264443 --- # bert-base-uncased_mnli This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4225 - Accuracy: 0.8430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5389 | 1.0 | 1534 | 0.4533 | 0.8247 | | 0.3569 | 2.0 | 3068 | 0.4376 | 0.8365 | | 0.2471 | 3.0 | 4602 | 0.4777 | 0.8365 | | 0.1699 | 4.0 | 6136 | 0.5418 | 0.8380 | | 0.1239 | 5.0 | 7670 | 0.6041 | 0.8287 | | 0.095 | 6.0 | 9204 | 0.6809 | 0.8275 | | 0.0784 | 7.0 | 10738 | 0.7138 | 0.8342 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3