--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.5881383855024712 --- # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.1777 - Accuracy: 0.5881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.6984 | 1.0 | 33208 | 1.1777 | 0.5881 | | 0.5294 | 2.0 | 66416 | 1.2095 | 0.6011 | | 0.4577 | 3.0 | 99624 | 1.2274 | 0.5958 | | 0.407 | 4.0 | 132832 | 1.2723 | 0.5964 | | 0.373 | 5.0 | 166040 | 1.3358 | 0.5938 | | 0.349 | 6.0 | 199248 | 1.2517 | 0.5949 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2