--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: hubert-base-ls960-speech-commands-h results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: None args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.7594424460431655 --- # hubert-base-ls960-speech-commands-h This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 1.3148 - Accuracy: 0.7594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.743 | 1.0 | 824 | 3.4107 | 0.1781 | | 2.3383 | 2.0 | 1648 | 3.4632 | 0.1862 | | 2.2702 | 3.0 | 2472 | 3.5701 | 0.0787 | | 2.3059 | 4.0 | 3296 | 3.5742 | 0.0971 | | 2.2574 | 5.0 | 4120 | 3.5457 | 0.1493 | | 2.0617 | 6.0 | 4944 | 2.8490 | 0.3453 | | 2.0289 | 7.0 | 5768 | 2.7607 | 0.3215 | | 1.7807 | 8.0 | 6592 | 2.5721 | 0.4681 | | 1.8188 | 9.0 | 7416 | 2.5625 | 0.5301 | | 1.3812 | 10.0 | 8240 | 2.4258 | 0.6942 | | 1.3136 | 11.0 | 9064 | 2.2087 | 0.6884 | | 1.2867 | 12.0 | 9888 | 1.8347 | 0.7221 | | 1.1036 | 13.0 | 10712 | 1.6731 | 0.7383 | | 0.9534 | 14.0 | 11536 | 1.8732 | 0.7307 | | 0.9289 | 15.0 | 12360 | 1.5742 | 0.7415 | | 1.0973 | 16.0 | 13184 | 1.3693 | 0.7365 | | 0.989 | 17.0 | 14008 | 1.2718 | 0.7455 | | 0.8876 | 18.0 | 14832 | 1.3148 | 0.7594 | | 0.814 | 19.0 | 15656 | 1.2231 | 0.7558 | | 0.9899 | 20.0 | 16480 | 1.2349 | 0.7522 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1