gokuls's picture
End of training
82aa7cd
|
raw
history blame
2.72 kB
metadata
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: hbertv1-emotion-logit_KD_new
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.884

hbertv1-emotion-logit_KD_new

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_48 on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6758
  • Accuracy: 0.884

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3717 1.0 250 1.7665 0.6635
1.3315 2.0 500 1.1797 0.7825
0.9074 3.0 750 0.7837 0.864
0.636 4.0 1000 0.7591 0.861
0.5276 5.0 1250 0.7692 0.85
0.4694 6.0 1500 0.7129 0.871
0.4317 7.0 1750 0.6381 0.8765
0.3791 8.0 2000 0.6646 0.879
0.3551 9.0 2250 0.6414 0.882
0.3236 10.0 2500 0.6436 0.8795
0.301 11.0 2750 0.6758 0.884
0.2854 12.0 3000 0.6706 0.8695
0.2698 13.0 3250 0.6216 0.8825
0.2554 14.0 3500 0.6592 0.879
0.2311 15.0 3750 0.7509 0.877
0.2275 16.0 4000 0.7177 0.8775

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0