--- base_model: gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_0.5 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: hbertv1-emotion-logit_KD-tiny_ffn_0.5 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.8945 --- # hbertv1-emotion-logit_KD-tiny_ffn_0.5 This model is a fine-tuned version of [gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_0.5](https://huggingface.co/gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_0.5) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.5131 - Accuracy: 0.8945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.1241 | 1.0 | 250 | 2.5267 | 0.5775 | | 2.0224 | 2.0 | 500 | 1.4869 | 0.748 | | 1.2988 | 3.0 | 750 | 0.9838 | 0.836 | | 0.9355 | 4.0 | 1000 | 0.7613 | 0.8535 | | 0.7507 | 5.0 | 1250 | 0.6392 | 0.8805 | | 0.6071 | 6.0 | 1500 | 0.5669 | 0.888 | | 0.5377 | 7.0 | 1750 | 0.5131 | 0.8945 | | 0.4707 | 8.0 | 2000 | 0.5133 | 0.8935 | | 0.4223 | 9.0 | 2250 | 0.5078 | 0.8905 | | 0.3933 | 10.0 | 2500 | 0.5156 | 0.8855 | | 0.3612 | 11.0 | 2750 | 0.4883 | 0.894 | | 0.3409 | 12.0 | 3000 | 0.4883 | 0.894 | ### Framework versions - Transformers 4.35.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.15.0 - Tokenizers 0.15.0