--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5487364620938628 --- # hBERTv2_rte This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2](https://huggingface.co/gokuls/bert_12_layer_model_v2) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6896 - Accuracy: 0.5487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7231 | 1.0 | 10 | 0.7175 | 0.4549 | | 0.702 | 2.0 | 20 | 0.7053 | 0.4729 | | 0.6982 | 3.0 | 30 | 0.6976 | 0.4585 | | 0.7008 | 4.0 | 40 | 0.7261 | 0.4657 | | 0.7022 | 5.0 | 50 | 0.7142 | 0.4946 | | 0.6867 | 6.0 | 60 | 0.6943 | 0.4801 | | 0.6796 | 7.0 | 70 | 0.6896 | 0.5487 | | 0.6614 | 8.0 | 80 | 0.7151 | 0.5162 | | 0.6303 | 9.0 | 90 | 0.7244 | 0.5271 | | 0.602 | 10.0 | 100 | 0.7570 | 0.4729 | | 0.5761 | 11.0 | 110 | 0.7605 | 0.5379 | | 0.5664 | 12.0 | 120 | 0.8160 | 0.5235 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.10.1 - Tokenizers 0.13.2