--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv2_new_pretrain_w_init_48_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.25026626408652064 --- # hBERTv2_new_pretrain_w_init_48_stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.2569 - Pearson: 0.2426 - Spearmanr: 0.2503 - Combined Score: 0.2465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.3064 | 1.0 | 45 | 2.2784 | 0.1492 | 0.1433 | 0.1462 | | 1.9454 | 2.0 | 90 | 2.2773 | 0.2660 | 0.2546 | 0.2603 | | 1.7733 | 3.0 | 135 | 2.2569 | 0.2426 | 0.2503 | 0.2465 | | 1.4752 | 4.0 | 180 | 2.3395 | 0.2833 | 0.3025 | 0.2929 | | 1.083 | 5.0 | 225 | 2.4140 | 0.3017 | 0.3066 | 0.3042 | | 0.8694 | 6.0 | 270 | 2.8854 | 0.2790 | 0.3025 | 0.2908 | | 0.7272 | 7.0 | 315 | 2.8901 | 0.3041 | 0.3066 | 0.3054 | | 0.6008 | 8.0 | 360 | 2.6252 | 0.2837 | 0.2833 | 0.2835 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3