--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_new_pretrain_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.4729241877256318 --- # hBERTv2_new_pretrain_rte This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7371 - Accuracy: 0.4729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 9.1657 | 1.0 | 20 | 0.7371 | 0.4729 | | 9.3188 | 2.0 | 40 | 0.7859 | 0.5271 | | 9.3339 | 3.0 | 60 | 0.9236 | 0.5271 | | 9.7488 | 4.0 | 80 | 0.9142 | 0.5271 | | 9.1542 | 5.0 | 100 | 0.8327 | 0.5271 | | 9.1755 | 6.0 | 120 | 0.8222 | 0.5271 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3