--- language: - en base_model: gokuls/bert_12_layer_model_v2_complete_training_new_48 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_new_pretrain_48_ver2_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- # hBERTv2_new_pretrain_48_ver2_wnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6858 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8132 | 1.0 | 10 | 0.7425 | 0.4366 | | 0.7131 | 2.0 | 20 | 0.6970 | 0.4366 | | 0.7083 | 3.0 | 30 | 0.6858 | 0.5634 | | 0.6956 | 4.0 | 40 | 0.6939 | 0.5352 | | 0.7103 | 5.0 | 50 | 0.7313 | 0.4366 | | 0.7169 | 6.0 | 60 | 0.7041 | 0.4366 | | 0.7039 | 7.0 | 70 | 0.6862 | 0.5634 | | 0.7041 | 8.0 | 80 | 0.6919 | 0.5352 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.1