--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv2_new_no_pretrain_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.20926356415783265 --- # hBERTv2_new_no_pretrain_stsb This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.2174 - Pearson: 0.1946 - Spearmanr: 0.2093 - Combined Score: 0.2019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.3893 | 1.0 | 45 | 2.3698 | 0.1204 | 0.1138 | 0.1171 | | 1.9589 | 2.0 | 90 | 2.2174 | 0.1946 | 0.2093 | 0.2019 | | 1.6743 | 3.0 | 135 | 2.3481 | 0.2144 | 0.2207 | 0.2175 | | 1.4068 | 4.0 | 180 | 2.5921 | 0.2472 | 0.2519 | 0.2496 | | 1.2205 | 5.0 | 225 | 2.6279 | 0.2718 | 0.2701 | 0.2709 | | 0.9353 | 6.0 | 270 | 2.5440 | 0.3117 | 0.3213 | 0.3165 | | 0.7662 | 7.0 | 315 | 2.3053 | 0.3501 | 0.3519 | 0.3510 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3