--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_no_pretrain_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6838235294117647 - name: F1 type: f1 value: 0.7895595432300163 --- # hBERTv2_new_no_pretrain_mrpc This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5914 - Accuracy: 0.6838 - F1: 0.7896 - Combined Score: 0.7367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6685 | 1.0 | 29 | 0.6107 | 0.6838 | 0.8122 | 0.7480 | | 0.6337 | 2.0 | 58 | 0.5914 | 0.6838 | 0.7896 | 0.7367 | | 0.529 | 3.0 | 87 | 0.6385 | 0.6642 | 0.7705 | 0.7174 | | 0.4182 | 4.0 | 116 | 0.6619 | 0.6985 | 0.8051 | 0.7518 | | 0.3095 | 5.0 | 145 | 1.0040 | 0.6471 | 0.7568 | 0.7019 | | 0.2219 | 6.0 | 174 | 0.9458 | 0.6225 | 0.7094 | 0.6660 | | 0.1813 | 7.0 | 203 | 1.1249 | 0.6838 | 0.7868 | 0.7353 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3