File size: 2,503 Bytes
5dbc97a 7de2b3b 5dbc97a 7de2b3b 5dbc97a 7de2b3b 5dbc97a 7de2b3b 5dbc97a 7de2b3b 5dbc97a 7de2b3b 5dbc97a 28484b9 5dbc97a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv2_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.6936274509803921
- name: F1
type: f1
value: 0.8085758039816232
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv2_mrpc
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2](https://huggingface.co/gokuls/bert_12_layer_model_v2) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5772
- Accuracy: 0.6936
- F1: 0.8086
- Combined Score: 0.7511
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6388 | 1.0 | 15 | 0.6297 | 0.6838 | 0.8122 | 0.7480 |
| 0.612 | 2.0 | 30 | 0.6315 | 0.6887 | 0.8135 | 0.7511 |
| 0.5725 | 3.0 | 45 | 0.5772 | 0.6936 | 0.8086 | 0.7511 |
| 0.512 | 4.0 | 60 | 0.6261 | 0.7010 | 0.8152 | 0.7581 |
| 0.3924 | 5.0 | 75 | 0.6433 | 0.7279 | 0.8195 | 0.7737 |
| 0.2592 | 6.0 | 90 | 0.7531 | 0.6863 | 0.7594 | 0.7228 |
| 0.1689 | 7.0 | 105 | 0.7904 | 0.7377 | 0.8158 | 0.7768 |
| 0.1292 | 8.0 | 120 | 0.9954 | 0.7623 | 0.8381 | 0.8002 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.10.1
- Tokenizers 0.13.2
|