--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8061926605504587 --- # hBERTv1_sst2 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1](https://huggingface.co/gokuls/bert_12_layer_model_v1) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6409 - Accuracy: 0.8062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6905 | 1.0 | 264 | 0.6919 | 0.5252 | | 0.6609 | 2.0 | 528 | 0.6088 | 0.6915 | | 0.4152 | 3.0 | 792 | 0.4525 | 0.7901 | | 0.2611 | 4.0 | 1056 | 0.4627 | 0.8096 | | 0.1953 | 5.0 | 1320 | 0.4894 | 0.8073 | | 0.1588 | 6.0 | 1584 | 0.6002 | 0.8016 | | 0.1336 | 7.0 | 1848 | 0.6467 | 0.8062 | | 0.1117 | 8.0 | 2112 | 0.6409 | 0.8062 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.10.1 - Tokenizers 0.13.2