--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_w_init__wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.43661971830985913 --- # hBERTv1_new_pretrain_w_init__wnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7009 - Accuracy: 0.4366 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 12.3688 | 1.0 | 5 | 6.2236 | 0.5634 | | 3.5093 | 2.0 | 10 | 0.7491 | 0.4366 | | 1.9112 | 3.0 | 15 | 2.5146 | 0.5634 | | 1.4995 | 4.0 | 20 | 1.8104 | 0.4366 | | 1.3047 | 5.0 | 25 | 0.6936 | 0.5634 | | 1.4685 | 6.0 | 30 | 0.7440 | 0.5634 | | 0.924 | 7.0 | 35 | 1.1066 | 0.4366 | | 0.8423 | 8.0 | 40 | 0.8221 | 0.4366 | | 0.8166 | 9.0 | 45 | 0.6855 | 0.5634 | | 0.7552 | 10.0 | 50 | 0.7181 | 0.5634 | | 0.7515 | 11.0 | 55 | 0.6951 | 0.5634 | | 0.7127 | 12.0 | 60 | 0.7140 | 0.4366 | | 0.7112 | 13.0 | 65 | 0.6901 | 0.5634 | | 0.6976 | 14.0 | 70 | 0.7009 | 0.4366 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3