--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_new_pretrain_w_init__stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.08916919703003628 --- # hBERTv1_new_pretrain_w_init__stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.2584 - Pearson: 0.0949 - Spearmanr: 0.0892 - Combined Score: 0.0920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.5056 | 1.0 | 45 | 2.2584 | 0.0949 | 0.0892 | 0.0920 | | 2.1254 | 2.0 | 90 | 2.6871 | 0.1250 | 0.1231 | 0.1241 | | 1.9839 | 3.0 | 135 | 2.2709 | 0.1790 | 0.1840 | 0.1815 | | 1.6299 | 4.0 | 180 | 2.5115 | 0.2691 | 0.2797 | 0.2744 | | 1.3155 | 5.0 | 225 | 2.4555 | 0.3453 | 0.3437 | 0.3445 | | 0.9686 | 6.0 | 270 | 2.8004 | 0.4571 | 0.4406 | 0.4489 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3