--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_w_init__sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8038990825688074 --- # hBERTv1_new_pretrain_w_init__sst2 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4606 - Accuracy: 0.8039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.363 | 1.0 | 527 | 0.4606 | 0.8039 | | 0.2256 | 2.0 | 1054 | 0.6466 | 0.8119 | | 0.1754 | 3.0 | 1581 | 0.5101 | 0.8177 | | 0.1394 | 4.0 | 2108 | 0.4921 | 0.8177 | | 0.1111 | 5.0 | 2635 | 0.5110 | 0.8200 | | 0.0937 | 6.0 | 3162 | 0.6468 | 0.8211 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3