--- language: - en base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_new_pretrain_48_ver2_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.385826216097769 --- # hBERTv1_new_pretrain_48_ver2_stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.0507 - Pearson: 0.3913 - Spearmanr: 0.3858 - Combined Score: 0.3885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.2439 | 1.0 | 90 | 2.2582 | 0.1118 | 0.1205 | 0.1162 | | 1.9712 | 2.0 | 180 | 2.5514 | 0.2121 | 0.2109 | 0.2115 | | 1.6254 | 3.0 | 270 | 2.6339 | 0.2885 | 0.2887 | 0.2886 | | 1.2292 | 4.0 | 360 | 2.1543 | 0.3642 | 0.3666 | 0.3654 | | 0.9444 | 5.0 | 450 | 2.6438 | 0.3529 | 0.3577 | 0.3553 | | 0.7567 | 6.0 | 540 | 2.3755 | 0.3820 | 0.3872 | 0.3846 | | 0.5838 | 7.0 | 630 | 2.0507 | 0.3913 | 0.3858 | 0.3885 | | 0.5032 | 8.0 | 720 | 2.5227 | 0.4037 | 0.4071 | 0.4054 | | 0.4112 | 9.0 | 810 | 2.1436 | 0.4072 | 0.3988 | 0.4030 | | 0.3551 | 10.0 | 900 | 2.1501 | 0.4069 | 0.4004 | 0.4037 | | 0.2961 | 11.0 | 990 | 2.2744 | 0.4137 | 0.4080 | 0.4109 | | 0.256 | 12.0 | 1080 | 2.3612 | 0.4115 | 0.4038 | 0.4076 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.1