--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_48_KD_w_init_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6141314296174263 --- # hBERTv1_new_pretrain_48_KD_w_init_qnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48_KD_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48_KD_wt_init) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6519 - Accuracy: 0.6141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.671 | 1.0 | 819 | 0.6635 | 0.5852 | | 0.6464 | 2.0 | 1638 | 0.6519 | 0.6141 | | 0.6249 | 3.0 | 2457 | 0.6722 | 0.6035 | | 0.6094 | 4.0 | 3276 | 0.6657 | 0.6072 | | 0.5982 | 5.0 | 4095 | 0.6642 | 0.5997 | | 0.5798 | 6.0 | 4914 | 0.6800 | 0.6125 | | 0.5594 | 7.0 | 5733 | 0.7102 | 0.6172 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3