--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_48_KD_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.3267900732302685 --- # hBERTv1_new_pretrain_48_KD_mnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48_KD](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48_KD) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.0977 - Accuracy: 0.3268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1011 | 1.0 | 3068 | 1.1001 | 0.3176 | | 1.0991 | 2.0 | 6136 | 1.0978 | 0.3295 | | 1.0983 | 3.0 | 9204 | 1.0985 | 0.3351 | | 1.0984 | 4.0 | 12272 | 1.0983 | 0.3294 | | 1.098 | 5.0 | 15340 | 1.0978 | 0.3264 | | 1.098 | 6.0 | 18408 | 1.0979 | 0.3285 | | 1.098 | 7.0 | 21476 | 1.0980 | 0.3272 | | 1.098 | 8.0 | 24544 | 1.0981 | 0.3266 | | 1.098 | 9.0 | 27612 | 1.0980 | 0.3256 | | 1.098 | 10.0 | 30680 | 1.0985 | 0.3320 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3