--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_data_aug_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- # hBERTv1_data_aug_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1](https://huggingface.co/gokuls/bert_12_layer_model_v1) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.1151 | 1.0 | 980 | 0.0045 | 0.9975 | 0.9982 | 0.9979 | | 0.0108 | 2.0 | 1960 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0063 | 3.0 | 2940 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0054 | 4.0 | 3920 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.004 | 5.0 | 4900 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0053 | 6.0 | 5880 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0046 | 7.0 | 6860 | 0.0003 | 1.0 | 1.0 | 1.0 | | 0.0116 | 8.0 | 7840 | 0.0150 | 0.9975 | 0.9982 | 0.9979 | | 0.0093 | 9.0 | 8820 | 0.0015 | 1.0 | 1.0 | 1.0 | | 0.0123 | 10.0 | 9800 | 0.0164 | 0.9975 | 0.9982 | 0.9979 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.10.1 - Tokenizers 0.13.2