--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_qnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6029654036243822 --- # distilbert_sa_GLUE_Experiment_qnli_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6564 - Accuracy: 0.6030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.679 | 1.0 | 410 | 0.6614 | 0.5938 | | 0.6496 | 2.0 | 820 | 0.6564 | 0.6030 | | 0.6268 | 3.0 | 1230 | 0.6635 | 0.5978 | | 0.6055 | 4.0 | 1640 | 0.6714 | 0.5933 | | 0.5836 | 5.0 | 2050 | 0.6964 | 0.5913 | | 0.5602 | 6.0 | 2460 | 0.7319 | 0.5832 | | 0.5385 | 7.0 | 2870 | 0.7653 | 0.5718 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2