--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_qnli_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.5701995240710233 --- # distilbert_sa_GLUE_Experiment_data_aug_qnli_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.9096 - Accuracy: 0.5702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5397 | 1.0 | 16604 | 0.9096 | 0.5702 | | 0.3675 | 2.0 | 33208 | 1.0680 | 0.5596 | | 0.2735 | 3.0 | 49812 | 1.1893 | 0.5653 | | 0.2174 | 4.0 | 66416 | 1.2806 | 0.5643 | | 0.1795 | 5.0 | 83020 | 1.4118 | 0.5649 | | 0.1514 | 6.0 | 99624 | 1.4578 | 0.5662 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2