--- license: mit base_model: distil-whisper/distil-small.en tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: distil-small.en-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: None args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.8066546762589928 --- # distil-small.en-speech-commands This model is a fine-tuned version of [distil-whisper/distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 0.9307 - Accuracy: 0.8067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1861 | 1.0 | 618 | 0.7743 | 0.8022 | | 0.1135 | 2.0 | 1236 | 0.9853 | 0.8049 | | 0.078 | 3.0 | 1854 | 0.9307 | 0.8067 | | 0.038 | 4.0 | 2472 | 0.9989 | 0.8049 | | 0.0375 | 5.0 | 3090 | 1.0738 | 0.8035 | | 0.0462 | 6.0 | 3708 | 1.1601 | 0.8067 | | 0.018 | 7.0 | 4326 | 1.5369 | 0.8067 | | 0.0008 | 8.0 | 4944 | 1.2515 | 0.8067 | | 0.0016 | 9.0 | 5562 | 1.3494 | 0.8058 | | 0.0002 | 10.0 | 6180 | 1.5117 | 0.8053 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1