--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: add_BERT_no_pretrain_sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.5091743119266054 --- # add_BERT_no_pretrain_sst2 This model is a fine-tuned version of [](https://huggingface.co/) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7002 - Accuracy: 0.5092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6983 | 1.0 | 527 | 0.6936 | 0.5092 | | 0.6895 | 2.0 | 1054 | 0.7089 | 0.5092 | | 0.6881 | 3.0 | 1581 | 0.6993 | 0.5092 | | 0.6875 | 4.0 | 2108 | 0.6994 | 0.5092 | | 0.6874 | 5.0 | 2635 | 0.6941 | 0.5092 | | 0.687 | 6.0 | 3162 | 0.7002 | 0.5092 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3