--- library_name: transformers license: mit base_model: openai-gpt tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: gpt1_sst2_right results: [] datasets: - nyu-mll/glue - stanfordnlp/sst2 --- # gpt1_sst2_right This model is a fine-tuned version of [openai-gpt](https://huggingface.co/openai-gpt) on sst2 dataset of GLUE benchmark. It achieves the following results on the evaluation set: - Loss: 0.4216 - Accuracy: 0.9255 - Recall: 0.9369 - Precision: 0.9183 For testing, the model is loaded as a pipeline, and used for the prediction of each sample in test split. The samples and their predictions are recorded in [test_preds.csv](https://huggingface.co/goktug14/gpt1_sst2_right/blob/main/test_preds.csv) file. Access to [Repository](https://github.com/GoktugGuvercin/Text-Classification/blob/main/gpt1_sst2.ipynb) for finetuning. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data For batched training, \ token is added to the tokenizer and the following padding-truncation options are adapted: - Padding Side: "right" - Truncation Side: "right" ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:| | 0.2 | 1.0 | 4210 | 0.2958 | 0.9037 | 0.8649 | 0.9412 | | 0.1455 | 2.0 | 8420 | 0.3172 | 0.9186 | 0.9505 | 0.8960 | | 0.0892 | 3.0 | 12630 | 0.3637 | 0.9278 | 0.9257 | 0.9320 | | 0.0584 | 4.0 | 16840 | 0.4216 | 0.9255 | 0.9369 | 0.9183 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0