--- license: apache-2.0 library_name: transformers language: - en Tags: - MCQ-Generator - T5 - text-generation-inference --- Model Card for Hard_QG_Generator Model Details Model Name: Hard_QG_Generator Model Description: This model can generate MCQs from a given passage. Model Type: Transformer. License: Acache-2.0 Author: Lokesh Goenka Intended Use Primary Use Cases: Generating MCQs from a given Passage. Generate MCQ-based tests for kids Primary Users: Teachers, Students, Researchers. Limitations and Risks Limitations: Limitation in the number of generated questions. Training Data Data Sources: NCERT Books https://epathshala.nic.in//process.php?id=students&type=eTextbooks&ln=en#content Usage Example Usage: Python hard_model = T5ForConditionalGeneration.from_pretrained("goenkalokesh/Hard_QG_Generator") hard_tokenizer = T5Tokenizer.from_pretrained("goenkalokesh/Hard_QG_Generator") -------------- prompt ='''Your Prompt''' input_text = f"{prompt}: {passage.strip()}" input_ids = hard_tokenizer.encode(input_text, return_tensors='pt') outputs = hard_model.generate( input_ids, max_length=max_length, num_beams=num_beams, early_stopping=early_stopping, no_repeat_ngram_size=3 ) output_text = hard_tokenizer.decode(outputs[0], skip_special_tokens=True) print(output_text)