--- library_name: transformers license: mit base_model: hbseong/HarmAug-Guard tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [hbseong/HarmAug-Guard](https://huggingface.co/hbseong/HarmAug-Guard) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1008 - Accuracy: 0.9667 - Precision: 0.9667 - Recall: 0.9667 - F1: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4652 | 0.9895 | 59 | 0.2876 | 0.9417 | 0.9445 | 0.9417 | 0.9414 | | 0.003 | 1.9958 | 119 | 0.1736 | 0.9667 | 0.9689 | 0.9667 | 0.9667 | | 0.0027 | 2.9853 | 178 | 0.2779 | 0.95 | 0.9519 | 0.95 | 0.9499 | | 0.1023 | 3.9916 | 238 | 0.3743 | 0.9333 | 0.9408 | 0.9333 | 0.9328 | | 0.0015 | 4.9979 | 298 | 0.3164 | 0.9417 | 0.9417 | 0.9417 | 0.9416 | | 0.0003 | 5.9874 | 357 | 0.2952 | 0.9583 | 0.9614 | 0.9583 | 0.9582 | | 0.0002 | 6.9937 | 417 | 0.2069 | 0.9417 | 0.9426 | 0.9417 | 0.9416 | | 0.0001 | 8.0 | 477 | 0.1738 | 0.9583 | 0.9584 | 0.9583 | 0.9583 | | 0.0001 | 8.9895 | 536 | 0.1008 | 0.9667 | 0.9667 | 0.9667 | 0.9667 | | 0.0001 | 9.8952 | 590 | 0.1016 | 0.9667 | 0.9667 | 0.9667 | 0.9667 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1