config: name: flux_dev_XRAY process: - datasets: - cache_latents_to_disk: true caption_dropout_rate: 0.2 caption_ext: txt folder_path: /root/lorahub/flux_dev_XRAY/dataset resolution: - 512 - 768 - 1024 shuffle_tokens: false token_dropout_rate: 0.01 device: cuda:0 model: is_flux: true name_or_path: black-forest-labs/FLUX.1-dev quantize: true text_encoder_bits: 8 network: linear: 42 linear_alpha: 42 transformer_only: true type: lora performance_log_every: 500 sample: height: 768 neg: '' prompts: - a skeleton wearing a hat playing poker at a table [trigger] - old computers standing on a table [trigger] - black and white image of a young woman [trigger] - deep sea creature [trigger] - monochrome, an old car parked in front of a suburb house [trigger] - monochrome, image of trees and surreal shaped branches [trigger] sample_every: 500 sample_steps: 25 sampler: flowmatch seed: 42 walk_seed: true width: 1182 save: dtype: float16 max_step_saves_to_keep: 3 save_every: 500 save_format: diffusers train: batch_size: 1 dtype: bf16 ema_config: ema_decay: 0.99 use_ema: true gradient_accumulation_steps: 1 gradient_checkpointing: true linear_timesteps: true loss_type: mse lr: 0.0002 noise_scheduler: flowmatch optimizer: adamw8bit reg_weight: 1.0 steps: 3000 target_noise_multiplier: 1.0 train_text_encoder: false train_unet: true training_folder: /root/lorahub trigger_word: XRAY type: sd_trainer job: extension meta: description: Trained on high resolution X-Ray images of humans, reptiles, fish and technology.