# regnetx_006 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```