--- library_name: peft language: - nep license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 model-index: - name: Whisper Large v2 Hi - Kabin results: [] --- # Whisper Large v2 Hi - Kabin This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.553 | 0.6944 | 25 | 0.8388 | | 0.508 | 1.3889 | 50 | 0.4456 | | 0.3276 | 2.0833 | 75 | 0.3984 | | 0.16 | 2.7778 | 100 | 0.3904 | ### Framework versions - PEFT 0.9.0 - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1