import gradio as gr from commons.Model import model from commons.Configs import configs from commons.OpenAIClient import openaiClient from prepareutils.Dataset import dataset import numpy as np import openai # load the model once clf = model.load() # load dataset qaDataset = dataset.loadDataset() def predict(question, openaiKey): # set openaiKey configs.OPENAI_KEY = openaiKey openai.api_key = openaiKey # embed question questionEmbedding = openaiClient.generateEmbeddings([question])[0] # predict answer index answerIndex = clf.predict([questionEmbedding]).item() # get answer bestAnswer = qaDataset[answerIndex] return bestAnswer["answer"] def randomExamples(numberOfExamples=15): # create random indexes in the range between 0 and len(qaDataset) randomIndexes = np.random.randint(0, len(qaDataset), numberOfExamples) examples = [] for index in randomIndexes: question = qaDataset[index]["question"] examples.append([question]) return examples gr.Interface( fn=predict, inputs=["text", "text"], outputs="text", examples=randomExamples(), ).launch()