library_name: peft
base_model: HuggingFaceM4/idefics-9b-instruct
Model Card for Model ID
This is a IDEFICS 9B model trained with ppo on the frozenlake env.
Model Details
Trainer Hyperparameters
suppress_warnings: True debug: True seed: 9812 reseed_env: True torch_deterministic: True track: True wandb_project_name: "frozenlake_idefics" wandb_entity: null #'rl-team-unito' wandb_log_dir: "${now:%Y-%m-%d_%H-%M-%S}" save_video: True save_video_every: 20 save_stats: True save_episode: False env_size: 244 env_area: 8 num_prompt_images: 1 use_text_description: True
Algorithm specific arguments
model: "HuggingFaceM4/idefics-9b-instruct" model_ckpt: null lora_adapter_path: null is_slippery: False fixed_orientation: True no_step_description: False first_person: True fov: 1
total_timesteps: 400000 disable_training: False from_accelerate_savestate_to_checkpoint: False learning_rate: 1e-5 critic_learning_rate: 1e-5 local_num_envs: 4 num_steps: 128 anneal_lr: False gamma: 0.99 gae_lambda: 0.95 num_minibatches: 128 update_epochs: 1 norm_adv: True clip_coef: 0.1 clip_vloss: True ent_coef: 0.01 #0.01 vf_coef: 0.5 max_grad_norm: 0.5 target_kl: null save_every: 50 gradient_accumulation: 4 adam_epsilon: 1e-8 gradient_ckpt: False lora: True temperature: 'max_logit' disable_adapters_for_generation: True normalization_by_words: False action_logits_from_whole_seq: True advanced_action_matching: False env_id: "FrozenLakeText-v0" # MiniGrid-LavaGapS7-v0 generate_actions: False value_prompt_template: "I am the agent in this minigrid world. {} Avoid the traps!\nWhat's the next best action?" action_template: " Based on the information provided, the next best action would be to {}" possible_actions_list: "forward pickup toggle opt_left opt_right opt_back"
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
Framework versions
- PEFT 0.10.0