--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: billsum-model results: [] --- # billsum-model This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8421 - Rouge1: 0.1961 - Rouge2: 0.1049 - Rougel: 0.1705 - Rougelsum: 0.1707 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.395 | 1.0 | 989 | 1.8823 | 0.193 | 0.1042 | 0.1686 | 0.1688 | 19.0 | | 1.9058 | 2.0 | 1978 | 1.8421 | 0.1961 | 0.1049 | 0.1705 | 0.1707 | 19.0 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3