--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: billsum-model results: [] --- # billsum-model This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2894 - Rouge1: 0.4161 - Rouge2: 0.1838 - Rougel: 0.2786 - Rougelsum: 0.2791 - Gen Len: 149.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | No log | 1.0 | 248 | 2.4737 | 0.3984 | 0.1645 | 0.261 | 0.2607 | 144.9718 | | No log | 2.0 | 496 | 2.3435 | 0.4126 | 0.1783 | 0.2762 | 0.2764 | 148.754 | | 3.4184 | 3.0 | 744 | 2.3004 | 0.4162 | 0.1814 | 0.2765 | 0.2767 | 149.0 | | 3.4184 | 4.0 | 992 | 2.2894 | 0.4161 | 0.1838 | 0.2786 | 0.2791 | 149.0 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3