{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a8511f91100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724313335994929947, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMDnLu7/7Q/4Oz2vsGjDj5lAbU7lrrfPQAAAAAAAAAAM7PRvQUlu7v2USQ8IpenPJUaHD1g8oy9AACAPwAAAABG2z+++J6ePL2zh7on/PI4HS4pvqIAvzkAAIA/AACAP80mpD0gfko/AjYJPtcWB7+xrY89y+tjPQAAAAAAAAAAykJ7vr9gQj/D2Eu+4CETv65PB77sCAo9AAAAAAAAAAAw/6u+aVQMPbcWgLrrMIk23ooUvsX0sjkAAIA/AACAP1Ywoj6cChE+t6SYPMvXFb76ais9VpShPAAAAAAAAAAAI4VSvvpLHD6Sihu9MMgMvgDHWL1eZxe8AAAAAAAAAABwZnO+VAAePh0BYDz9X0O+PtZcvd1u4DwAAAAAAAAAAD4Pub4LCYE9cH22uxIJ2DlP4jG++/AfOwAAgD8AAIA/k3vrPsJM3z7CcBg9e17Avh2pGT7o2fm8AAAAAAAAAAAzy5s9ce1euauFlL7y27C7a2M0POBaKD4AAAAAAAAAADNV7Dzxb64/ncQ2PxkJE78Mqb+8+UmBvQAAAAAAAAAAAHjavJJCuD97uIK+fZTwO2P3aLn4njy9AAAAAAAAAAC6jms+aTdrPz2N9T7Gsv2+gZlcPiaBFj4AAAAAAAAAALaqhL7UO/C82l9Du6RBz7kN61c+KAZ5OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwA/tEw35vceMAWyUS8mMAXSUR0CYnZRb8m8edX2UKGgGR0BwkI91U2k0aAdL4mgIR0CYnm2s7uD0dX2UKGgGR0Bt3z9uP3i8aAdLwmgIR0CYoDnw5NoKdX2UKGgGR0Bu4lnCfpUxaAdL82gIR0CYoff4yoGZdX2UKGgGR0AU5b3XZoPDaAdLw2gIR0CYolqnFYMfdX2UKGgGR0BxLWX4TK1YaAdLwGgIR0CYoonMt9QXdX2UKGgGR0BwtzQhOgxraAdLyWgIR0CYo0sC1Z1WdX2UKGgGR0Bktov8IiTuaAdN6ANoCEdAmKQIUvf0mXV9lChoBkdAWe2l+EytWGgHTegDaAhHQJikw+zMRpV1fZQoaAZHQCJXC9AX2uhoB0vlaAhHQJilZ9a2Wpt1fZQoaAZHQEp+0FbFCLNoB0vtaAhHQJinUkRjBmB1fZQoaAZHQG2QyF49ovloB00PAWgIR0CYp36Zpi7TdX2UKGgGR0BsP4b2lEZ0aAdL9GgIR0CYp92VmjCYdX2UKGgGR0By+YMPSUkfaAdL82gIR0CYqLNlAeJYdX2UKGgGR0BxTHkRzzVdaAdLzGgIR0CYrPUDuBtldX2UKGgGR0BsMG4NI9TxaAdL/GgIR0CYrcL9deIEdX2UKGgGR0Bv/ppcophGaAdNCAFoCEdAmK5VoL5RCXV9lChoBkdAbWYqvNeMQ2gHTSABaAhHQJivYFfReC11fZQoaAZHQHFjWj0th/loB0vuaAhHQJiwW43FUAF1fZQoaAZHQG8jO+ZgG8poB0vDaAhHQJkOJ/NJOFh1fZQoaAZHQHDFtNFjNINoB0vmaAhHQJkPxdSl3yJ1fZQoaAZHQFYGLFXJYDFoB03oA2gIR0CZEIf4AS39dX2UKGgGR0BrrOwX668QaAdNNwFoCEdAmRFDCgsbvXV9lChoBkdAbaMp6yB062gHTQMBaAhHQJkRfLbHp8p1fZQoaAZHQHGTGznied1oB0u4aAhHQJkUaSkj5bh1fZQoaAZHQFMKwQlKK51oB03oA2gIR0CZFKCojv/jdX2UKGgGR0BwHjtnf2saaAdL8mgIR0CZFiXumaYvdX2UKGgGR0BvYDgjyFwlaAdNBwFoCEdAmReL/82rGXV9lChoBkdAcMj+XZ5AyGgHS/loCEdAmRmHWvr4WXV9lChoBkdAcKMRjSXt0GgHS+RoCEdAmRoHv2GqP3V9lChoBkdAcdT/gzguRWgHS8ZoCEdAmRqrftQbdnV9lChoBkdAcTDnMdLg42gHTS8BaAhHQJkbM+wC8vp1fZQoaAZHQF8QZ5Rjz7NoB03oA2gIR0CZHK38XN1RdX2UKGgGR0BtSyTfR/mUaAdL/mgIR0CZHR+7Dl5odX2UKGgGR0BzUpgJC0F9aAdNRgFoCEdAmR9K3AmAsnV9lChoBkdAby4hOgxrSGgHS79oCEdAmR9dcOby6XV9lChoBkdAcWz3nZCfH2gHS+loCEdAmR+b655JLHV9lChoBkdAcO734sVclmgHS9RoCEdAmSESJbdJrnV9lChoBkdAbc8nVG0/nmgHTRABaAhHQJkhFajesPt1fZQoaAZHQEH0Ippeu3doB0vjaAhHQJkjQnSfDk51fZQoaAZHQHBMTVlPJq9oB0v5aAhHQJkjtazNUwV1fZQoaAZHQFgC2/zreIloB03oA2gIR0CZJNsmv4dqdX2UKGgGR0BtDpdyDIzWaAdLzmgIR0CZJpGJemeldX2UKGgGR0BxsQx0uDjBaAdL4WgIR0CZJzGNrCWNdX2UKGgGR0Bv4bW5H3DfaAdL5WgIR0CZJ62tMfzSdX2UKGgGR0BBER1X/5tWaAdLwGgIR0CZJ+DRtxdZdX2UKGgGR0BzjSOo5xR3aAdNLwFoCEdAmSff+sHSnnV9lChoBkdAb04TPBzmwWgHS8loCEdAmSgzeXRgJHV9lChoBkdAYqskVvddmmgHTegDaAhHQJkolRuTA311fZQoaAZHQGNeTyJ9AopoB03oA2gIR0CZKuXjU/fPdX2UKGgGR0BvYuC/XXiBaAdL0WgIR0CZKvRkmQbNdX2UKGgGR0BvJLxTbWVeaAdNFQFoCEdAmSzoEfT1CnV9lChoBkdAbVDOrQw9JWgHS+poCEdAmS7FPrOZ9nV9lChoBkdAYAj6eGwiaGgHTegDaAhHQJkvpMrVe8h1fZQoaAZHQHDdyTpxFRZoB0vkaAhHQJkv7pfQa751fZQoaAZHQG6/GwA2hqVoB00RAWgIR0CZMOPbwjMWdX2UKGgGR0BwcqcslLOBaAdNAAFoCEdAmTD0/W1+iXV9lChoBkdAWYobNr0rb2gHTegDaAhHQJky8kAxSHd1fZQoaAZHQHFDat9x6v9oB001AWgIR0CZMy/EwWWQdX2UKGgGR0Bwo5MnJDE4aAdL6GgIR0CZM1aTfR/mdX2UKGgGR0BxUOeK8+RpaAdL+WgIR0CZNfdDpkf+dX2UKGgGR0ByyW3LFGXpaAdNOwFoCEdAmTZQjlgc+HV9lChoBkdAbt0AI6bONmgHS81oCEdAmTc6ZUkv9XV9lChoBkdAcArdiUgSvmgHS+hoCEdAmTlIqgAZKnV9lChoBkdAbghMJQcghmgHS+1oCEdAmTx6OYIBzXV9lChoBkdAbuMOFxn3+WgHS8loCEdAmT5Hy/bj+HV9lChoBkdAcZfNKAavR2gHS9RoCEdAmT89BSk0rXV9lChoBkdAYa9e2NNrTGgHTegDaAhHQJlA9g5R0lt1fZQoaAZHQGDZlQ/HHWBoB03oA2gIR0CZQWOO801qdX2UKGgGR0By4NNDc/MXaAdL8GgIR0CZQacdHUc5dX2UKGgGR0Bii7gVGkN4aAdN6ANoCEdAmULiobXHznV9lChoBkdAcRsAZbY9PmgHTQ0BaAhHQJlEzbL2YfJ1fZQoaAZHQHFCVqSHM2ZoB0u0aAhHQJlJeWhRIjJ1fZQoaAZHQHDn+BUaQ3hoB0vSaAhHQJlKuR7qptJ1fZQoaAZHQGvacS5AhStoB0v4aAhHQJlKyMOwxFl1fZQoaAZHQD9jKT0QK8doB0u5aAhHQJlMEFHJ9y91fZQoaAZHQG//aRISUTtoB0vnaAhHQJlMzTy8SPF1fZQoaAZHQFdMOj7ALzBoB03oA2gIR0CZTYdBSk0rdX2UKGgGR0BcyMAvL5h0aAdN6ANoCEdAmVHZBsyi23V9lChoBkdAYGnVT72tdWgHTegDaAhHQJlS7GDL8rJ1fZQoaAZHQG20GSyMUAVoB0vKaAhHQJlT7vOQhfV1fZQoaAZHQG+fwJ5VwP1oB0vfaAhHQJlVfzreImB1fZQoaAZHQHCeZaNdZ7poB0vnaAhHQJlWy7voePt1fZQoaAZHQHDrfx6OYIBoB0viaAhHQJlXnTWoWHl1fZQoaAZHQHFsS00FbFFoB00IAWgIR0CZWKUqx1PndX2UKGgGR0Bj5OW2PT5PaAdN6ANoCEdAmVnH/cWTHXV9lChoBkdAb5vLwnYxtmgHS9JoCEdAmVoGrGR3eXV9lChoBkdAcB42hIvrW2gHS75oCEdAmVpKZML4OHV9lChoBkdAYCUxi5NGmWgHTegDaAhHQJlapmqYJE91fZQoaAZHQGLOMd92HL1oB03oA2gIR0CZW+ko4MnadX2UKGgGR0BJZsUIsyzpaAdL2mgIR0CZXEZLqUu+dX2UKGgGR0A56pgCwKSgaAdLzGgIR0CZXTQrMC9zdX2UKGgGR0Bf+0sjFAE/aAdN6ANoCEdAmV3YvJzT4XV9lChoBkdAXm99lVcUumgHTegDaAhHQJleExzq8lJ1fZQoaAZHQHFcjsUqQRxoB0vqaAhHQJlfUsd1dPd1fZQoaAZHQG+Ihb4agmJoB0vcaAhHQJlgamzjWCp1fZQoaAZHQHCnxakhzNloB0v8aAhHQJlgorWiDdx1fZQoaAZHQGnYapYLb6BoB0vSaAhHQJlhj9GZuyh1fZQoaAZHQCQNTNt65XloB0vPaAhHQJlhxTHbRF91fZQoaAZHQG55uIyj59FoB0vpaAhHQJlh6T0QK8d1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}