--- license: apache-2.0 base_model: - google/gemma-2-9b-it --- # General Preference Representation Model (GPM) + **Authors** (* indicates equal contribution) Yifan Zhang*, Ge Zhang*, Yue Wu*, Kangping Xu, Quanquan Gu + **Paper**: [General Preference Modeling with Preference Representations for Aligning Language Models (https://arxiv.org/abs/2410.02197)](https://arxiv.org/abs/2410.02197) + **As Huggingface Daily Papers**: [https://huggingface.co/papers/2410.02197](https://huggingface.co/papers/2410.02197) + **Code Repository**: [General-Preference-Model (https://github.com/general-preference/general-preference-model)](https://github.com/general-preference/general-preference-model) + **Dataset**: [natolambert/skywork-preferences-80k-v0.1-cleaned](https://huggingface.co/datasets/natolambert/skywork-preferences-80k-v0.1-cleaned) + **Base Model**: [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) ## Overview The General Preference Representation Model (GPM) improves preference-based reward modeling by embedding responses into a latent space to efficiently capture complex, intransitive human preferences. GPM achieves linear query complexity, allowing for expressive preference representation, and outperforms traditional Bradley-Terry (BT) reward models, particularly in handling cyclic preferences. ## Key Features - **Preference Representation Learning**: Embeds responses in a multi-dimensional latent space to model intricate human preferences, including cyclic and intransitive structures. - **Efficient Querying**: Reduces computational complexity to O(K), compared to O(K²) for traditional methods, making GPM scalable for large response sets. - **General Preference Optimization (GPO)**: Introduces a preference score that integrates with reinforcement learning methods to optimize policy alignment with human preferences. ## Evaluation The GPM is evaluated using the [RewardBench](https://github.com/allenai/reward-bench) leaderboard, showing significant improvements over the BT model, with a performance margin of up to 5.6%. GPM also excels in modeling cyclic preferences, achieving 100% accuracy on cyclic datasets. ## Usage To use this model, please refer to the [General Preference Model Code Repository](https://github.com/general-preference/general-preference-model). The repository includes detailed instructions for finetuning, evaluation, and integration of the GPM with downstream tasks. Below is an example code snippet: ```python from typing import Optional, List, Dict import torch import torch.nn as nn from transformers import AutoConfig, AutoModel, AutoModelForCausalLM import torch.nn.functional as F from transformers import AutoTokenizer def get_tokenizer(pretrain, model, padding_side="left", use_fast=True): tokenizer = AutoTokenizer.from_pretrained(pretrain, trust_remote_code=True, use_fast=use_fast) tokenizer.padding_side = padding_side if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id model.config.pad_token_id = tokenizer.pad_token_id return tokenizer def get_reward_model(base_causal_model, base_llm_model, is_general_preference: bool=False, add_prompt_head: bool=False, value_head_dim: int=2): class CustomRewardModel(base_causal_model): def __init__(self, config: AutoConfig): super().__init__(config) setattr(self, self.base_model_prefix, base_llm_model(config)) if not is_general_preference: self.value_head = nn.Linear(config.hidden_size, 1, bias=False) else: self.value_head = nn.Linear(config.hidden_size, value_head_dim, bias=False) if add_prompt_head: self.prompt_head = nn.Linear(config.hidden_size, value_head_dim // 2, bias=False) self.is_general_preference = is_general_preference self.post_init() def custom_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, return_output=False, ) -> torch.Tensor: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) outputs = getattr(self, self.base_model_prefix)( input_ids, attention_mask=attention_mask, position_ids=position_ids ) last_hidden_states = outputs["last_hidden_state"] if not self.is_general_preference: values = self.value_head(last_hidden_states).squeeze(-1) # left padding in training mode if self.training: reward = values[:, -1] else: eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1, keepdim=True) reward = values.gather(dim=1, index=eos_indices).squeeze(1) if return_output: return reward, outputs else: return reward, None else: values = self.value_head(last_hidden_states) # left padding in training mode if self.training: reward = values[:, -1, :] reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim] else: eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1) eos_indices = eos_indices.unsqueeze(1) # Change shape to [batch_size, 1] reward_list = [] for dim in range(value_head_dim): reward_list.append(values[:,:,dim].gather(dim=1, index=eos_indices)) reward = torch.cat(reward_list, dim=1) reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim] if return_output: return reward, outputs else: return reward, None def create_skew_symmetric_block_matrix(self, dim, device, dtype, prompt_hidden_states): """ Create a batch of skew-symmetric block matrices where each matrix is data-dependent on the corresponding prompt_hidden_states. Only the relevant block diagonal parts are generated. Args: - dim: Dimension of the square matrix (must be even). - prompt_hidden_states: Tensor of shape [batch_size, hidden_dim]. Returns: - batch_R_matrices: Tensor of shape [batch_size, dim, dim], with skew-symmetric block entries. """ if hasattr(self, 'prompt_head'): batch_size = prompt_hidden_states.shape[0] # Ensure that dim is even, as we're creating blocks of size 2x2 assert dim % 2 == 0, "dim must be even for skew-symmetric block generation" # Pass through the linear layer to get the block diagonal entries (half of the matrix's off-diagonal blocks) block_values = self.prompt_head(prompt_hidden_states).view(batch_size, dim // 2) block_values = torch.softmax(block_values, dim=-1) # Create a batch of zero matrices [batch_size, dim, dim] batch_R_matrices = torch.zeros((batch_size, dim, dim), device=device, dtype=dtype) # Fill only the block diagonal entries with the learned values for i in range(0, dim, 2): batch_R_matrices[:, i, i + 1] = -block_values[:, i // 2] batch_R_matrices[:, i + 1, i] = block_values[:, i // 2] # Skew-symmetric condition else: raise AttributeError("prompt_head is not defined. Ensure 'add_prompt_head' is set to True during initialization.") return batch_R_matrices return CustomRewardModel def generate_high_dim_result_with_prompt(model, value_head_dim, chosen_reward, rejected_reward, prompt_hidden_states): R_matrix = model.create_skew_symmetric_block_matrix(value_head_dim, chosen_reward.device, chosen_reward.dtype, prompt_hidden_states) if chosen_reward.device == rejected_reward.device == R_matrix.device: transformed_chosen = torch.bmm(chosen_reward.view(chosen_reward.shape[0], 1, value_head_dim), R_matrix.transpose(1, 2)) result = torch.bmm(transformed_chosen, rejected_reward.view(rejected_reward.shape[0], value_head_dim, 1)) result = result.view(chosen_reward.shape[0]) return result class GPMPipeline: def __init__(self, model_name_or_path, device=torch.device("cuda:0"), is_general_preference: bool=True, add_prompt_head: bool=True, value_head_dim: int=2, bf16: bool=True, truncation: bool=True, max_length: int=4096, padding: bool=True, tau: float=0.1): self.device = device self.is_general_preference = is_general_preference self.add_prompt_head = add_prompt_head self.value_head_dim = value_head_dim self.truncation = truncation self.max_length = max_length self.padding = padding self.tau = tau config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) config._attn_implementation = "flash_attention_2" base_class = AutoModel._model_mapping[type(config)] base_causal_class = AutoModelForCausalLM._model_mapping.get(type(config), None) cls_class = get_reward_model(base_causal_class, base_class, is_general_preference, add_prompt_head, value_head_dim) # configure model self.model = cls_class.from_pretrained( model_name_or_path, config=config, trust_remote_code=True, torch_dtype=torch.bfloat16 if bf16 else "auto", ) # configure tokenizer self.tokenizer = get_tokenizer(model_name_or_path, self.model, "left", use_fast=True) self.tokenizer.truncation_side = "right" # prepare model self.model.to(device) self.model.eval() def __call__(self, samples: List[List[Dict[str, str]]], return_prompt=False): input_texts = [self.tokenizer.apply_chat_template(sample, tokenize=False) for sample in samples] inputs = self.tokenizer( input_texts, truncation=True, max_length=self.max_length, padding=True, return_tensors="pt", ).to(self.device) inputs["input_ids"][:, -1] = self.tokenizer.eos_token_id inputs["attention_mask"][:, -1] = 1 with torch.no_grad(): rewards, outputs = self.model.custom_forward(**inputs, return_output=return_prompt) chosen_response_len_list = [] if return_prompt: prompt_texts = [self.tokenizer.apply_chat_template([sample[0]], tokenize=False) for sample in samples] for i in range(len(input_texts)): prompt_token = self.tokenizer( prompt_texts[i], max_length=self.max_length, padding=False, truncation=True, return_tensors="pt", ) chosen_token = self.tokenizer( input_texts[i], max_length=self.max_length, padding=False, truncation=True, return_tensors="pt", ) chosen_response_len = chosen_token["attention_mask"].sum() - prompt_token["attention_mask"].sum() chosen_response_len_list.append(chosen_response_len) chosen_response_len = torch.tensor(chosen_response_len_list).view(-1, 1).to(self.device) if return_prompt: chosen_last_hidden_states = outputs["last_hidden_state"] prompt_end_index = chosen_last_hidden_states.size(1) - chosen_response_len - 1 prompt_end_index_expanded = prompt_end_index.unsqueeze(-1).expand(-1, -1, chosen_last_hidden_states.size(-1)) prompt_hidden_state = torch.gather(chosen_last_hidden_states, dim=1, index=prompt_end_index_expanded).squeeze(1) return rewards, prompt_hidden_state else: return rewards prompt_text = "Describe the importance of reading books in today's digital age." response1 = "Books remain crucial in the digital era, offering in-depth knowledge and fostering critical thinking. They provide a unique, immersive experience that digital media can't replicate, contributing significantly to personal and intellectual growth." response2 = "Books are still useful for learning new things. They help you relax and can be a good break from screens." context1 = [ {"role": "user", "content": prompt_text}, {"role": "assistant", "content": response1} ] context2 = [ {"role": "user", "content": prompt_text}, {"role": "assistant", "content": response2} ] rm = GPMPipeline("general-preference/GPM-Gemma-2-9B-it", value_head_dim=4) reward1, prompt_hidden_state = rm([context1], return_prompt=True) reward2 = rm([context2]) result = generate_high_dim_result_with_prompt(rm.model, rm.value_head_dim, reward1, reward2, prompt_hidden_state) result_batch = result.float().cpu().detach().numpy().tolist() results = [] [ results.append(1) if result > 0 else results.append(0) for result in result_batch ] print(result_batch) ``` ## Citation If you find this work useful for your research, please consider citing: ``` @article{zhang2024general, title={General Preference Modeling with Preference Representations for Aligning Language Models}, author={Zhang, Yifan and Zhang, Ge and Wu, Yue and Xu, Kangping and Gu, Quanquan}, journal={arXiv preprint arXiv:2410.02197}, year={2024} } ```