# AIDO.RNA-1.6B AIDO.RNA-1.6B is a general-purpose RNA foundation model with 1.6 billion parameters, trained on 42 million non-coding RNA sequences at single-nucleotide resolution. It achieves state-of-the-art performance on a comprehensive set of tasks, including RNA secondary structure prediction, mRNA-related tasks, RNA function prediction, and RNA inverse folding. After domain adaptation, AIDO.RNA excels in modeling protein-level tasks, highlighting its potential to leverage the central dogma for enhancing biomolecular representations. For more detailed information, please refer to [our paper](https://www.biorxiv.org/content/10.1101/2024.11.28.625345v1).

description

## Model architectural details AIDO.RNA is an encoder-only transformer and is pre-trained using masked language modeling (MLM) objective. The model architecture parameters are as follows: | hyperparameter | value | | :---: | :----: | | num-layers | 32 | | hidden-size | 2,048 | | ffn-hidden-size | 5,440 | | num-attn-heads | 32 | | vocab-size | 16 | ## Pre-training data The pre-training data contains 42 million unique ncRNA sequences from RNAcentral version 24.0.

description

## Downstream evaluation

description

## How to Use ### Build any downstream models from this backbone with ModelGenerator For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator) ```bash mgen fit --model SequenceClassification --model.backbone aido_rna_1b600m --data SequenceClassificationDataModule --data.path mgen test --model SequenceClassification --model.backbone aido_rna_1b600m --data SequenceClassificationDataModule --data.path ``` ### Or use directly in Python #### Embedding ```python from modelgenerator.tasks import Embed model = Embed.from_config({"model.backbone": "aido_rna_1b600m"}).eval() collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) embedding = model(collated_batch) print(embedding.shape) print(embedding) ``` #### Sequence-level Classification ```python import torch from modelgenerator.tasks import SequenceClassification model = SequenceClassification.from_config({"model.backbone": "aido_rna_1b600m", "model.n_classes": 2}).eval() collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) logits = model(collated_batch) print(logits) print(torch.argmax(logits, dim=-1)) ``` #### Token-level Classification ```python import torch from modelgenerator.tasks import TokenClassification model = TokenClassification.from_config({"model.backbone": "aido_rna_1b600m", "model.n_classes": 3}).eval() collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) logits = model(collated_batch) print(logits) print(torch.argmax(logits, dim=-1)) ``` #### Sequence-level Regression ```python from modelgenerator.tasks import SequenceRegression model = SequenceRegression.from_config({"model.backbone": "aido_rna_1b600m"}).eval() collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) logits = model(collated_batch) print(logits) ``` ### Get RNA sequence embedding ```python from genbio_finetune.tasks import Embed model = Embed.from_config({"model.backbone": "aido_rna_1b600m"}).eval() collated_batch = model.collate({"sequences": ["ACGT", "ACGT"]}) embedding = model(collated_batch) print(embedding.shape) print(embedding) ``` ## Citation Please cite AIDO.RNA using the following BibTeX code: ``` @misc{zou_large-scale_2024, title = {A Large-Scale Foundation Model for RNA Function and Structure Prediction}, url = {https://www.biorxiv.org/content/10.1101/2024.11.28.625345v1}, doi = {10.1101/2024.11.28.625345}, publisher = {bioRxiv}, author = {Zou, Shuxian and Tao, Tianhua and Mahbub, Sazan and Ellington, Caleb N. and Algayres, Robin and Li, Dian and Zhuang, Yonghao and Wang, Hongyi and Song, Le and Xing, Eric P.}, year = {2024}, } ```