--- base_model: gechim/metadata-cls-no-gov-8k-v3 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhobertLexicalMeta results: [] --- [Visualize in Weights & Biases](https://wandb.ai/nguyenducbao/huggingface/runs/h3pap4wy) # PhobertLexicalMeta This model is a fine-tuned version of [gechim/metadata-cls-no-gov-8k-v3](https://huggingface.co/gechim/metadata-cls-no-gov-8k-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0927 - Accuracy: 0.9792 - F1: 0.9664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.1701 | 1.9608 | 200 | 0.0936 | 0.9741 | 0.9575 | | 0.0537 | 3.9216 | 400 | 0.0780 | 0.9780 | 0.9647 | | 0.0252 | 5.8824 | 600 | 0.0762 | 0.9805 | 0.9687 | | 0.016 | 7.8431 | 800 | 0.0996 | 0.9780 | 0.9640 | | 0.0098 | 9.8039 | 1000 | 0.0927 | 0.9792 | 0.9664 | ### Framework versions - Transformers 4.43.1 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1