--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: fnet-base-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.628158844765343 --- # fnet-base-finetuned-rte This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6978 - Accuracy: 0.6282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \ --model_name_or_path google/fnet-base \ --task_name rte \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir fnet-base-finetuned-rte \ --push_to_hub \ --hub_strategy all_checkpoints \ --logging_strategy epoch \ --save_strategy epoch \ --evaluation_strategy epoch \ ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6829 | 1.0 | 156 | 0.6657 | 0.5704 | | 0.6174 | 2.0 | 312 | 0.6784 | 0.6101 | | 0.5141 | 3.0 | 468 | 0.6978 | 0.6282 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3