--- language: - en license: apache-2.0 tags: - generated_from_trainer - fnet-bert-base-comparison datasets: - nyu-mll/glue metrics: - spearmanr model-index: - name: bert-base-cased-finetuned-stsb results: - task: type: text-classification name: Text Classification dataset: name: GLUE STSB type: glue args: stsb metrics: - type: spearmanr value: 0.8897907271421561 name: Spearmanr --- # bert-base-cased-finetuned-stsb This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.4861 - Pearson: 0.8926 - Spearmanr: 0.8898 - Combined Score: 0.8912 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name stsb \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-stsb \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:| | 1.1174 | 1.0 | 360 | 0.8816 | 0.5000 | 0.8832 | 0.8800 | | 0.3835 | 2.0 | 720 | 0.8901 | 0.4672 | 0.8915 | 0.8888 | | 0.2388 | 3.0 | 1080 | 0.8912 | 0.4861 | 0.8926 | 0.8898 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3