---
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Net carrying amount | 10,953 | Less short-term portion | (1,250)
| Total long-term portion | $ | 9,703
sentences:
- How much did restructuring costs amount to in the financial statement?
- How much long-term debt remains after accounting for the short-term portion as
of January 29, 2023?
- What are the company's environmental sustainability strategies?
- source_sentence: 'Total gross margin for 2023: $169,148 million, for 2022: $170,782
million, and for 2021: $152,836 million.'
sentences:
- How did the total gross margin for Apple Inc. change from 2022 to 2023?
- What was the change in noninterest expense for Bank of America from 2022 to 2023?
- How much did FS net revenue increase by in fiscal 2023 compared to fiscal 2022?
- source_sentence: 'Goldman Sachs manages its activities in three business segments:
Global Banking & Markets, Asset & Wealth Management, and Platform Solutions.'
sentences:
- What are the three business segments of Goldman Sachs as mentioned in their 2023
Form 10-K?
- How are financial statement indexes presented in a document?
- What was the total foreign currency transaction loss recorded for the year ended
December 31, 2023?
- source_sentence: NIKE, Inc. was incorporated in 1967 under the laws of the State
of Oregon.
sentences:
- What was the global gender equity status at Meta in July 2023?
- When was NIKE, Inc. incorporated and under the laws of which state?
- How is product warranty liability estimated by the company?
- source_sentence: In 2023, total assets associated with derivatives designated as
hedging instruments amounted to $1,527 million, while total liabilities amounted
to $5,962 million.
sentences:
- How are delivery sales categorized in financial statements?
- What was the balance of deferred net loss on derivatives included in accumulated
other comprehensive income as of December 31, 2023?
- What was the total value of assets and liabilities associated with derivatives
designated as hedging instruments in 2023?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7314285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9171428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7314285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28047619047619043
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17599999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09171428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7314285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9171428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8242643635674787
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7945634920634922
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7974204140430639
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.73
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8442857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8757142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.73
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2814285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1751428571428571
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.73
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8442857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8757142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8208470282419681
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7917534013605444
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7950732633962434
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7242857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7242857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27619047619047615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7242857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8144984416133947
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7853690476190478
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7887014688628511
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7042857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8128571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7042857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2709523809523809
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7042857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8128571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8018796849794548
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.769049886621315
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7722252928484385
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6657142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.82
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8685714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6657142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16399999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08685714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6657142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.78
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.82
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8685714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7667584555431229
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7344319727891154
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7397691471615258
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gavinqiangli/bge-base-financial-matryoshka")
# Run inference
sentences = [
'In 2023, total assets associated with derivatives designated as hedging instruments amounted to $1,527 million, while total liabilities amounted to $5,962 million.',
'What was the total value of assets and liabilities associated with derivatives designated as hedging instruments in 2023?',
'What was the balance of deferred net loss on derivatives included in accumulated other comprehensive income as of December 31, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7314 |
| cosine_accuracy@3 | 0.8414 |
| cosine_accuracy@5 | 0.88 |
| cosine_accuracy@10 | 0.9171 |
| cosine_precision@1 | 0.7314 |
| cosine_precision@3 | 0.2805 |
| cosine_precision@5 | 0.176 |
| cosine_precision@10 | 0.0917 |
| cosine_recall@1 | 0.7314 |
| cosine_recall@3 | 0.8414 |
| cosine_recall@5 | 0.88 |
| cosine_recall@10 | 0.9171 |
| cosine_ndcg@10 | 0.8243 |
| cosine_mrr@10 | 0.7946 |
| **cosine_map@100** | **0.7974** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.73 |
| cosine_accuracy@3 | 0.8443 |
| cosine_accuracy@5 | 0.8757 |
| cosine_accuracy@10 | 0.9114 |
| cosine_precision@1 | 0.73 |
| cosine_precision@3 | 0.2814 |
| cosine_precision@5 | 0.1751 |
| cosine_precision@10 | 0.0911 |
| cosine_recall@1 | 0.73 |
| cosine_recall@3 | 0.8443 |
| cosine_recall@5 | 0.8757 |
| cosine_recall@10 | 0.9114 |
| cosine_ndcg@10 | 0.8208 |
| cosine_mrr@10 | 0.7918 |
| **cosine_map@100** | **0.7951** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7243 |
| cosine_accuracy@3 | 0.8286 |
| cosine_accuracy@5 | 0.8671 |
| cosine_accuracy@10 | 0.9057 |
| cosine_precision@1 | 0.7243 |
| cosine_precision@3 | 0.2762 |
| cosine_precision@5 | 0.1734 |
| cosine_precision@10 | 0.0906 |
| cosine_recall@1 | 0.7243 |
| cosine_recall@3 | 0.8286 |
| cosine_recall@5 | 0.8671 |
| cosine_recall@10 | 0.9057 |
| cosine_ndcg@10 | 0.8145 |
| cosine_mrr@10 | 0.7854 |
| **cosine_map@100** | **0.7887** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7043 |
| cosine_accuracy@3 | 0.8129 |
| cosine_accuracy@5 | 0.8557 |
| cosine_accuracy@10 | 0.9057 |
| cosine_precision@1 | 0.7043 |
| cosine_precision@3 | 0.271 |
| cosine_precision@5 | 0.1711 |
| cosine_precision@10 | 0.0906 |
| cosine_recall@1 | 0.7043 |
| cosine_recall@3 | 0.8129 |
| cosine_recall@5 | 0.8557 |
| cosine_recall@10 | 0.9057 |
| cosine_ndcg@10 | 0.8019 |
| cosine_mrr@10 | 0.769 |
| **cosine_map@100** | **0.7722** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6657 |
| cosine_accuracy@3 | 0.78 |
| cosine_accuracy@5 | 0.82 |
| cosine_accuracy@10 | 0.8686 |
| cosine_precision@1 | 0.6657 |
| cosine_precision@3 | 0.26 |
| cosine_precision@5 | 0.164 |
| cosine_precision@10 | 0.0869 |
| cosine_recall@1 | 0.6657 |
| cosine_recall@3 | 0.78 |
| cosine_recall@5 | 0.82 |
| cosine_recall@10 | 0.8686 |
| cosine_ndcg@10 | 0.7668 |
| cosine_mrr@10 | 0.7344 |
| **cosine_map@100** | **0.7398** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
The Nominating and Corporate Governance Committee of our Board of Directors is responsible for reviewing and discussing with management our practices related to ESG.
| What is the role of the Nominating and Corporate Governance Committee at NVIDIA?
|
| Deferred tax assets and deferred tax liabilities included in the Consolidated Balance Sheets as follows: As of October 31, 2023: Deferred tax assets were $3,155 million and Deferred tax liabilities were $44 million. As of October 31, 2022: Deferred tax assets were $2,167 million and Deferred tax liabilities were $121 million. The total net deferred tax assets were $3,111 million in 2023 and $2,046 million in 2022.
| What was the change in HP's net deferred tax assets from 2022 to 2023?
|
| Sales and marketing expense increased $247 million, or 16%, in 2023, compared to 2022, primarily due to a $177 million increase in marketing activities associated with our marketing campaigns and launches and our search engine marketing and advertising spend.
| What was the major reason for the increase in Sales and Marketing expenses in 2023?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters