from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor import librosa import torch # Genre mapping corrected to a dictionary genre_mapping = { 0: "Electronic", 1: "Rock", 2: "Punk", 3: "Experimental", 4: "Hip-Hop", 5: "Folk", 6: "Chiptune / Glitch", 7: "Instrumental", 8: "Pop", 9: "International", } model = Wav2Vec2ForSequenceClassification.from_pretrained("gastonduault/music-classifier") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-large") # Function for preprocessing audio for prediction def preprocess_audio(audio_path): audio_array, sampling_rate = librosa.load(audio_path, sr=16000) return feature_extractor(audio_array, sampling_rate=16000, return_tensors="pt", padding=True) # Path to your audio file audio_path = "./Nirvana - Come As You Are.wav" # Preprocess audio inputs = preprocess_audio(audio_path) # Predict with torch.no_grad(): logits = model(**inputs).logits predicted_class = torch.argmax(logits, dim=-1).item() # Output the result print(f"song analized:{audio_path}") print(f"Predicted genre: {genre_mapping[predicted_class]}")