music-classifier / README.md
gastonduault's picture
update predict example
aada626
|
raw
history blame
1.98 kB
---
datasets:
- lewtun/music_genres_small
base_model:
- facebook/wav2vec2-large
metrics:
- accuracy
- f1
tags:
- audio
- music
- classification
- Wav2Vec2
pipeline_tag: audio-classification
---
# Music Genre Classification Model 🎶
This model classifies music genres based on audio signals.
It was fine-tuned on the model **[Wav2Vec2](https://huggingface.co/facebook/wav2vec2-large)** and using the datasets **[music_genres_small](https://huggingface.co/datasets/lewtun/music_genres_small)**.
You can find a **GitHub** repository with an interface hosted by a Flask API to test the model: **[music-classifier repository](https://github.com/gastonduault/Music-Classifier)**
## Metrics
- **Validation Accuracy**: 75%
- **F1 Score**: 74%
- **Validation Loss**: 0.77
## Example Usage
```python
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
import librosa
import torch
# Genre mapping corrected to a dictionary
genre_mapping = {
0: "Electronic",
1: "Rock",
2: "Punk",
3: "Experimental",
4: "Hip-Hop",
5: "Folk",
6: "Chiptune / Glitch",
7: "Instrumental",
8: "Pop",
9: "International",
}
model = Wav2Vec2ForSequenceClassification.from_pretrained("gastonduault/music-classifier")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-large")
# Function for preprocessing audio for prediction
def preprocess_audio(audio_path):
audio_array, sampling_rate = librosa.load(audio_path, sr=16000)
return feature_extractor(audio_array, sampling_rate=16000, return_tensors="pt", padding=True)
# Path to your audio file
audio_path = "./Nirvana - Come As You Are.wav"
# Preprocess audio
inputs = preprocess_audio(audio_path)
# Predict
with torch.no_grad():
logits = model(**inputs).logits
predicted_class = torch.argmax(logits, dim=-1).item()
# Output the result
print(f"song analized:{audio_path}")
print(f"Predicted genre: {genre_mapping[predicted_class]}")