--- license: gpl-3.0 --- Pre-trained word embeddings using the text of published biomedical manuscripts. These embeddings use 300 dimensions and were trained using the word2vec algorithm on all available manuscripts found in the [PMC Open Access Subset](https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). See the paper here: https://pubmed.ncbi.nlm.nih.gov/34920127/ Citation: ``` @article{flamholz2022word, title={Word embeddings trained on published case reports are lightweight, effective for clinical tasks, and free of protected health information}, author={Flamholz, Zachary N and Crane-Droesch, Andrew and Ungar, Lyle H and Weissman, Gary E}, journal={Journal of Biomedical Informatics}, volume={125}, pages={103971}, year={2022}, publisher={Elsevier} } ``` ## Quick start Word embeddings are compatible with the [`gensim` Python package](https://radimrehurek.com/gensim/) format. First download the files from this archive. Then load the embeddings into Python. ```python from gensim.models import FastText, Word2Vec, KeyedVectors # KeyedVectors are used to load the GloVe models # Load the model model = Word2Vec.load('w2v_oa_all_300d.bin') # Return 100-dimensional vector representations of each word model.wv.word_vec('diabetes') model.wv.word_vec('cardiac_arrest') model.wv.word_vec('lymphangioleiomyomatosis') # Try out cosine similarity model.wv.similarity('copd', 'chronic_obstructive_pulmonary_disease') model.wv.similarity('myocardial_infarction', 'heart_attack') model.wv.similarity('lymphangioleiomyomatosis', 'lam') ```