--- license: mit tags: - generated_from_trainer datasets: - wikitext metrics: - accuracy base_model: roberta-base model-index: - name: wikitext_roberta-base results: - task: type: fill-mask name: Masked Language Modeling dataset: name: wikitext wikitext-2-raw-v1 type: wikitext args: wikitext-2-raw-v1 metrics: - type: accuracy value: 0.7371052344006119 name: Accuracy --- # wikitext_roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the wikitext wikitext-2-raw-v1 dataset. It achieves the following results on the evaluation set: - Loss: 1.2143 - Accuracy: 0.7371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4175 | 0.99 | 37 | 1.3355 | 0.7194 | | 1.438 | 1.99 | 74 | 1.2953 | 0.7249 | | 1.4363 | 2.99 | 111 | 1.2759 | 0.7276 | | 1.3391 | 3.99 | 148 | 1.2904 | 0.7252 | | 1.3741 | 4.99 | 185 | 1.2621 | 0.7290 | | 1.2771 | 5.99 | 222 | 1.2312 | 0.7353 | | 1.287 | 6.99 | 259 | 1.2542 | 0.7289 | | 1.29 | 7.99 | 296 | 1.2290 | 0.7345 | | 1.2948 | 8.99 | 333 | 1.2537 | 0.7286 | | 1.2741 | 9.99 | 370 | 1.2199 | 0.7354 | | 1.2342 | 10.99 | 407 | 1.2520 | 0.7309 | | 1.2199 | 11.99 | 444 | 1.2738 | 0.7260 | | 1.206 | 12.99 | 481 | 1.2286 | 0.7335 | | 1.221 | 13.99 | 518 | 1.2421 | 0.7327 | | 1.2062 | 14.99 | 555 | 1.2402 | 0.7328 | | 1.2305 | 15.99 | 592 | 1.2473 | 0.7308 | | 1.2426 | 16.99 | 629 | 1.2250 | 0.7318 | | 1.2096 | 17.99 | 666 | 1.2186 | 0.7353 | | 1.1961 | 18.99 | 703 | 1.2214 | 0.7361 | | 1.2136 | 19.99 | 740 | 1.2506 | 0.7311 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1