--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-pii-masking-augmented-test2 results: [] --- # deberta-pii-masking-augmented-test2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0248 - Precision: 0.9565 - Recall: 0.9663 - F1: 0.9613 - Accuracy: 0.9919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5574 | 0.16 | 1000 | 0.0750 | 0.8633 | 0.9081 | 0.8851 | 0.9774 | | 0.0572 | 0.32 | 2000 | 0.0455 | 0.9151 | 0.9290 | 0.9220 | 0.9857 | | 0.0401 | 0.48 | 3000 | 0.0395 | 0.9294 | 0.9452 | 0.9372 | 0.9873 | | 0.0319 | 0.64 | 4000 | 0.0301 | 0.9443 | 0.9548 | 0.9496 | 0.9902 | | 0.0277 | 0.8 | 5000 | 0.0264 | 0.9503 | 0.9618 | 0.9560 | 0.9912 | | 0.0231 | 0.96 | 6000 | 0.0249 | 0.9538 | 0.9652 | 0.9595 | 0.9920 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1