import copy import os import time import torch import torch.optim as optim from torch.optim import lr_scheduler from torchvision import datasets, models, transforms from tqdm import tqdm # Directory with organized font images data_dir = './train_test_images' # Define transformations for the image data data_transforms = { 'train': transforms.Compose([ transforms.Resize((224, 224)), # Resize to the input size expected by the model transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ImageNet standards ]), 'test': transforms.Compose([ transforms.Resize((224, 224)), # Resize to the input size expected by the model transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } # Create datasets image_datasets = { x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'test'] } # Create dataloaders dataloaders = { 'train': torch.utils.data.DataLoader(image_datasets['train'], batch_size=4), 'test': torch.utils.data.DataLoader(image_datasets['test'], batch_size=4) } # Define the model model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT) # Define the loss function criterion = torch.nn.CrossEntropyLoss() # Optimizer (you can replace 'model.parameters()' with specific parameters to optimize if needed) optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) # Number of epochs to train for num_epochs = 25 def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'test']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. # Here we wrap the dataloader with tqdm for a progress bar for inputs, labels in tqdm(dataloaders[phase], desc=f"Epoch {epoch} - {phase}"): # Zero the parameter gradients optimizer.zero_grad() # Forward # Track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # Backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # Statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / len(image_datasets[phase]) epoch_acc = running_corrects.double() / len(image_datasets[phase]) print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # Deep copy the model if phase == 'test' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best test Acc: {:4f}'.format(best_acc)) # Load best model weights model.load_state_dict(best_model_wts) return model # Train the model model = train_model(model, criterion, optimizer, exp_lr_scheduler, num_epochs=num_epochs)